
Phase diagram of the naive mean-field model for spin glasses

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 5561

(http://iopscience.iop.org/0953-8984/4/25/009)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 12:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/25
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys: Condens. Matter 4 (1992) 5561-5572 Printed in the UK 

Phase diagram of the naive mean-field made1 for spin glasses 

K Nishimura and K Nemoto 
Institute of Physics University d 'Bukuba, ?Sukuba 3 5 ,  Japan 

AbstracL The replica-symmelry-breaking solution is formulated for the infinite-ranged 
binomial spin glass model, which is a generalization of the Sherringlon-Kirl;patnck (SK) 
model and includes the BraySompolinsky-Yu (BSY) model as a limit. In the formulation 
il b found that the Parisi equalion is the Same as the original one for lhe SK model. 
This fact b used to show lhal the boundary telween the spin glass phase and the mixed 
phase is independent of temperature, which is anfirmed by numerical analysis of the 
naive mean-field equations and mmplrlcs Ill? phase diagram of the BSY model. 

1. Introduction 

The mean-field theory of spin glasses (SG) has been studied extensively on the basis of 
the Sherrington-Kirkpatrick (SK) model [I]. The SG phase of the SK model has been 
revealed to have stimulating properties such as the marginal stability, the ragged free 
energy, the hierarchically-structured metastable states and so on. These properties 
were derived originally from an interpretation of the replica-symmetry-breaking (RSB) 
solution for the SK model, and were thought to be rather specific to the model. More 
recent works, however, showed that this is not'the case and that they are shared by 
other infinite-ranged SG models. 

The BraySompolinsky-Yu (BSY) model [2] is one of such models, which is 
described as the limit m - CO of the infinite-ranged 'm-component binomial spin' 
Hamiltonian: 

where 

l m  s; = - c s. ' . IL (Si,,' = * l )  na 
p=1 

are called 'binomial spins'. The interactions J i j  are usual Gaussian random variables 
with the mean J , / N  and the variance J 2 / N ,  where N is the system size (we scale 
the unit of the energy to be J = 1 from now on). BSY [2] showed that in the limit 
m -* CO the equations of state are given by 
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where 0 = 1/T. These equations are called the naive mean-field (NMF) equations. 
The difference with those for the SK model, that is, the Thouless-Anderson-Palmer 
(TAP) equations, is the lack of the Onsager reaction terms in the mean-field. 

BSY [2] solved the NMF equations by using Sompolinsky's mcthod [3] and found 
the solution to be very similar to that for the SK model. Bkayama and Nemoto [4] 
evaluated the number of solutions of (1.3) by using the replica method which was 
introduced for the TAP equations by Bray and Moore [5] and showed that it also 
increases exponentially with N in the SG phase. They also found numerically that the 
SG phase is marginally stable. More recently, we solved the NMF equations numerically 
to find that the number of solutions indeed agrees with the result from the replica 
method, and confirmed that the distribution of the overlap between metastable states 
is not bivial [6]. In this way, all the previous works indicate the existence of a great 
deal of similarity between the two models, and of the universality of the SC nature in 
the mean-field theory. 

What is missing, however, is a complete and direct derivation of the RSB solution 
for the BSY model. The solution should he essentially equivalent to that obtained by 
Sompolinsky's method, as it is for the SK model [3,7]. 'Ib obtain the formulation of 
the RSB solution, we apply, in section 2, the RSU scheme proposed by De Dominicis 
a a[ (DGO) [SI to the binomial SG model, which includes both the SK model and the 
BSY model as mentioned above. It turns out that the formulation thus obtained is 
very similar to that for the original SK model. In particular, the Parisi equation holds 
for all m without any modification. By virtue of this fact, one can 'reuse' almost 
all arguments for the SK model to deduce the SG properties! One of the examples 
is the phase diagram in T-J, plane. We show that the boundary between the SG 
(RSB) phases with and without magnetization is parallel to the T-axis and is located 
at J, = 1 for the binomial model and thus for the BSY model. In section 3, we solve 
the NMF equations numerically to confirm that the boundary is indeed independent 
of T. Our results are summarized in section 4. 

2. Replica-symmetry-breaking formulation 

The straightforward application of the replica trick to the model Hamiltonian (1.1) 
gives the free energy as [Z] 

where 

m 

U* = Sf; = p m p  ya = h + J ,  A4,. (2.3) 
p = 1  

In the above equations, a and b run from 1 to the number of replicas, n. By Tt(,) 
we denote explicitly that the trace is taken over 11-replicated binomial spins. 
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The auxilialy fields, or the order parameters, Qab and Ma, are determined self- 
consistently by 

Qob = Qaa = ( S a S b )  M, = (9) (2.4) 

where (. . .) denotes the average generated by Z,,. The magnetization per  king spin 
(component of the binomial spin) and the zero-field susceptibility are given by 

respectively. 
We note here that the replica symmetry of Ma is expected not to be broken 

(M, = M for all a )  since the mode associated with A4 is stable even in the RS 
solution [9]. 

21. The Parisi m a l k  and K O ' s  RSB scheme 
lb express the broken replica symmctry, Parisi introduced a hierarchical structure for 
the matrix Q = { Q a h }  (see [I]). As wcll known, the algebraic structure survives in 
the zero-replica limit as the order-parameter function q ( r )  defined in 0 < z 4 1, and 
thus the free energy can be expressed as the functional of q(s) .  

A set of the n dimensional Parisi matrices of level IC is specified by a series of 
integers n = p o  > p ,  > . . . > p f c  = 1 such that p k  divides pk- , .  Each element of 
the set, A, is specified by I< f 1 parameters, { a n ,  a , ,  . . . , a f c  = E } ,  and is obtained 
as A, in the series of p k  x p k  submatrices { A k }  defined recursively as 

with A,< = Z, which represents the value of the diagonal elements. Here we denote . 
by U ,  the pk x pk matrix whose elements are all 1. 

The replica symmetric solution is obtained by taking Q to be a Parisi matrix of 
level 1 with qo = q,  = q + 2/m. Fbr the SK model the RS solution is given by 
setting m = 1 and 2 = 1 - q ,  while In - CO for the BSY model. 

Although Parisi's RSB scheme works well for the binomial spin model with finite 
m, we adopt here another RSB scheme proposed by De Dominieis et a/ (DGO)[S]. 
The reason for this is that one must scale the anomalous response by m in each 
hierarchical block to attain the BSY limit (ni i m) properly, otherwise the limit 
goes to an unexpected replica-symmetric solution. By using DGO's RSB scheme, one 
can treat explicitly the anomalous response function A( z), which was first introduced 
by Sompolinsky [3]. 

In DGO's RSB scheme, the Parisi matrix Q B modified at the top level and takes 
the following structure: 
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where Qo and D, are p o  x p ,  Parisi matrices described above, and p ,  is taken to 
divide n. The diagonal anomaly Do is specified as 
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and the diagonal element of Q, is given by 

'Ib get a 'proper' solution, one should take the limit P ,  > p1 > > P K - ~  --* 03 
before taking n -+ 0. After some calculation (see the Appendix for details), one gets 
the following expressions: 

dz - J (2nq(O))W e x P ( - ~ ) G ( O , - + h + ~ o ~ ~ )  (2.10) 

where dots and primes denote the derivatives with respect to x and y, respectively. 
Note that the diffusion-like equation (the Parisi'equation) (2.11) is the Same as that 
for the SK model. The correspondent for Parisi's RSB scheme is given by choosing 
the Parisi gauge, A = i q .  

The main m dependence is in the initial condition for G( 1, y), (2.12). In fact, 
G( 1, y) reduces to that for the SK model by setting m = 1 and ?( 1) = 1 - q( l),  as 
expected: 

C(1,y)  = ;/32[1-q(1)] +il l(2coshpy).  (2 13) 
On the other hand, the NMF limit m -+ cu gives that for the BSY model: 

G(1, y) = - -?( 1 ) E (  1, y)* + In{ 2 cosh D[y + pc( I)%( 1, y)]] 

E( 1, y) = tanh p( y + @?( I)=( 1, y)) . (2.15) 

In both cases, the Parisi equation (2.11) is common because it depends only on the 
structure of the RSB taken and the detail uf the spin structure is not relevant. 

(214) 
PZ 
2 

The zero-field susceptibility (25) is given as 

x = B Z O )  (2.16) 

where 
1 

Z ( x )  = ji(1) + J A dx (2.17) 
= 

which means $(i) = -A. 
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22. Vnriational functional 

Sommers and Dupont [7] applied the Lagrange multiplier method for the SK model 
to obtain a closed form of equations of state. Their procedure can be naturally 
extended for the present model. In fact almost all equations obtained by them hold 
without any change. 

The variational functional is given as the free energy (2.10) with two additional 
terms so that (211) and (2.12) hold: 

x ( G ( r , y ) f  $qG"(z,y)+ iAC'(r ,y) ' )  (2  18) 

where Gl (y )  denotes .the right-hand side (RHS) of (212). As for the SK model, 
the Lagrange multiplier P ( c , y )  is introduccd, which can be interpreted as the in- 
ternal field distribution 17, lo]. The lunctional derivatives give (211), (2.12) and the 
following equations: 

P - fqP' + PA( P E ) {  = 0 (2 19) 

q(r) = / d y  f( . r ,y)7K(r3y) '  (2.21) 

P%.) = I d y  P(.z,Y)E'(~,Y) (2W 

where E( z, y)  = TG'( z, y) is introduced, which satisfies 

% + - ; i" m + ~AGTE' = 0. (224) 

Many interesting properties of the above equations known for the SK model hold 
true for the present model. Among them, the most important is the following: The 
differentiation of (221) with respect to I gives the condition 

/dy P ( z , y ) E ' ( z , y ) ' =  1 (2.25) 

or q = 0. This equation is equivalent to the condition of the marginal stability in the 
replica space. The phase boundary of the RSB (the de Almeida-Thouless line 191) is 
given as the special case where I = 1. 
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Sompolinsky [3] and Sommers Ill] argued that 9(O) = 0 implies x = 1 for the 
SK model. Their argument holds true for the present case without modification. For 
h = Jo = 0, q(0) = 0 is a solution of (2.21) since fi is an odd function of y so that 
f i ( ~ , O )  = 0. Then, (2.23) and (2.25) reduce to 

(2.26) 

respectively, which means x = pF(0)  = 1. This result is also true for Jo  + 0 as long 
as A4 = 0, which is a solution of (222). 

On the other hand, 'Ibulouse I121 discussed the boundary of the spin glass phase 
and the mixed phase on J,-T plane. If the equation of magnetization has the form 
A4 = f(T, h + J o M ) ,  which is indeed satisfied in the present case, as seen in (2.22) 
with (2.20), then it can be expanded as 

, ,  
p%(o) = Z(0,O) G ' ( O , O ) ?  = 1 

M - s ( T , J 0  = O ) ( / t .  + J o M )  +non-linear terms. (2.27) 

Thus the phase boundary J,'(7') is given by 

J,C(T) = S ( T , J ,  = o)-l. (2.28) 

Therefore we can conclude that the phase boundary is parallel to the T-axis and at 
Ja = 1 irrespective of the number of the internal king spins, 711. 

3. Numerical analysis 

?b confirm the validity of the prediction of the RSB solution we perform numerical 
analysis on the phase boundaly between the SG and the mixed phase for the BSY 
model by means of the NMF equations (1.3). The procedure is as follow. We Solve the 
NMF equations numerically for each sample from T = 2.5 down to 0.75 successively 
keeping Jo fied. This cooling procedure is repeated for several samples and for 
various Jo between 0 and 1.5. The system sizes we examine are N = 50, 60, 80, 100, 
120, 150, 200 and 200 - 50 samples are uscd for random average. Solutions of (1.3) 
are given as local minima of the NMF free energy: 

'Ib find the local minimum we use relaxational dynamics described by the following 
equations: 

A solution of (1.3) is given as a steady state of these equations. Using the s o b  
tion obtained, we estimate the magnetization and the free energy to determine the 
boundary between the SG and mixed phases. 
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3.1. Magnetization 

The magnetization of the system is evaluated as M = N-'  Ci mi for each sam- 
ple. Because of the finite-size effect, magnetization appears for any Jo and N (an 
infinitesimal field, h - lom4, is applied during the cooling process to break time- 
reversal symmetry). TO extract the thermodynamic limit we fit these data to the 
following form, 

M ( N )  = M ( m )  + aN-9 ( 3 4  

where A#(m), a and 6 are the fitting parameters. In figure 1 we show two typical 
results of the fit together with the raw data, one in the SG phase ( J ,  = 0.6) and the 
other in the mixed phase (Ja  = 1.2). Although the fluctuation of raw data makes 
the error rather large, the CxtrapOkdtCd data clearly indicate which phase appears 
in the system. The J,, dependence of the squared magnetization, M', is shown in 
figure 2 for several temperatures. For all tcmperatures investigated, the magnetimtion 
vanishes below J; while M ?  - J ,  - J;  above J ;  with J; - 1. This result indicates 
that J; (= 1) is independent of T and that the critical exponent of magnetization 
with respect to Jo is 4. 

I 

Figure 1. Temperalure depcndcnue of the magnelhalion a1 JO = 1.2 (upper) and a1 
Jo = 0.6 (lower) lor N = SO. M. IIkI, 120 and ZJO (.) (top 10 bollom) and the 
thermodynamic limil ( 0 ) .  

1 T 2 

3.2 Free energy 
As easily seen from (3.1), the free energy is related to the magnetization through the 
equation 

(3.3) 

which means the free energy is independent of J, in the paramagnetic and the SG 
phases. We show in figure 3 the free energy versus J,, at T = 0.8. The free energy 
has a plateau region below J; - 1 and then begins to decrease with increasing 
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M2 

0 ',I o *  0 

JO 

Figure 2 Jo dependence of !lie quared mngnelizalion ar T = 0.8(.), l.O(n), U(.), 
1.4(0), 1.6(4), I.S(O). 

J,, as expected. To check the comistcncy of thc data, we perform the numerical 
differentiation of the free energy to compare it with the previous result. As shown in 
the inset of figure 3 the results from direct ObSeWdtiOn and from the relation (3.3) 
are in perfect agreement quantitatively. 

A Summary 

We have formulated the RSB solution for the binomial SG model, which interpolates 
between the SK model and the BSY model. The formulation turned out to be very 
similar to that of the original one for the SK model. In particular, the Parisi equation 
can be constructed so as to be independent of in. This similarity enables us to discuss 
the SG properties with the Same arguments as used for the SK model. Thus we can 
conclude that the binomial SG model includcs a class of the mean-field models in 
which the nature of the SG phase is common. In fact the TAP free energy for this 
model is easily evaluated by using Plefka's method [13], and is given by 

This is equivalent to that introduced in [4] with y = l /m. There it was emphasized 
that the Onsager term in the equations of state plays only a minor role in yielding 
the SG properties. The present result gives a complementary reasoning for them. 

As an example of such common properties we have shown that the boundary 
between the SG and mixed phases is independent of temperature, that is, the boundary 
is vertical to the &-axis in T-J ,  plane. This verticality has been confirmed for the 
BSY model by numerical analysis of the NMF equations. This completes the phase 
diagram of the model in the T-J,, plane as summarized in figure 4. 
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0.92 

0.9 

0.88 

0.86 

JO 

Figure 3. JO dependence of the free energy at T = 1.0. 7he inset shows the squared 
magnetization evaluated from numericill dilfcrentialion of the free energy(.) and that 
measured directly (0). 

0 1 2 
JO 

Figure 4 Phase diagram for the BSY model. PM, c, FM and mixed represent the 
paramagnetic, spin glass. ferromagnetic and mixed phases. The PM-FM b u n d a i y  is 
given as T = JO + I /&. 
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Appendix 

It is convenient to write the 'partition function' given by (2.2) in matrix form as 

Z,(y) = Trl,,exp (fu'Qu + yit.'u) ( A . 9  
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where U and U are the n-dimensional column Vectors whose elements are U& and 
1, respectively. At the top level, Q is divided into n / p 0  x n / p o  blocks, so we can 
rewrite (kl) as 

ZO(Y) = ZO(IYi = YI) 64.2) 

where 

Here u ~ , ~  denotes the i th of the p L  dimensional column Vectors and there are n / p o  
such vectors, so that there are a total of r i p k / p 0  binomial spins (U) in the exponent. 
Similarly ak denotes the p k  dimensional column vector whose elements are all 1. 
Equation (k4) reduces to ( k 3 )  by setting k = 0, provided = d-,  = 0. The 
definition seems somewhat artificial but one will find it quite natural soon. Indeed it 
is a natural generalization of the recursive equation introduced by Duplantier [14]. 

Now we decompose the exponent into p k / p k t ,  blocks to lower the level by 1. 
Noting U k t l  = U ~ ~ , Z L ~ ~ ,  we have 
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x 2 k t 1 ( { Z  t Yi + v ; } ) P * / P * + l  ( A 3  

where 6qk = qk - qkWl and 6 d ,  = d, - d k - l .  ?b get the free energy per component 
king spin, we introduce 

Gk({Yi}) In Zk({yi)) Gk(y)  = GL({Y~ = Y}). ( A 4  

Than we get the following recursion Cormula: 

For p k  -+ 03 we can estimate the integration with respect to 7 1 ;  by.the saddle point 
method. Assuming that the saddle point { 7 $ }  is given at the symmctric point (771 = 77; 
for ail 2 ) .  we get 

and 

where n i n p k / p o  < 1 is used. This recursion terminates at k = A', where G, is 
given by 

(A.lO) 
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Finally we can take the continuous limit where A' -CO, k / I i  - x ,  Ah - b(s)ds ,  
Sqk-+q(r )dr ,  t ~ ~ ( y ) - A ( ~ ) G ~ ( ~ , y ) ~ . ~  and C,(y)-C(+,y): 

K Nishimura and K Neniofo 

G : ( r , y ) +  ;(4(z)G"(T,y)+ A(z)G ' ( r , y )~ )  = o  (A.l l )  

and 

(A.12) 1 
m 

G(1,y) = --InTr,I)exp 
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