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Phase diagram of the naive mean-field medel for spin glasses

K Nishimura and K Nemoto
Institute of Physics, University of Tsukuba, Bukuba 305, Japan

Abstract. The replica-symmelry-breaking solution is formulated for the ipfinite-ranged
binomial spin glass model, which is a generalization of the Sherrington—Kirkpatrick (SK)
model and includes the Bray-Sompolinsky-Yu (BSY) mode] as a limit. In the formulation
it is found that the Parisi equation is the same as the original one for the SK model.
This fact is used to show that the boundary between the spin glass phase and the mixed
phase is independent of temperature, which is confirmed by numerical analysis of the
naive mean-field equations and compietes the phase diagram of the BSY model.

1. Introduction

The mean-field theory of spin glasses (SG) has been studied extensively on the basis of
the Sherrington-Kirkpatrick (SK) model [1]. The sG phase of the SK model has been
revealed to have stimulating properties such as the marginal stability, the ragged free
energy, the hierarchically-structured metastable states and so on. These properties
were derived originally from an interpretation of the replica-symmetry-breaking (RSB)
solution for the SK model, and were thought to be rather specific to the model. More
recent works, however, showed that this is not-the case and that they are shared by
other infinite-ranged sG models.

The Bray-Sompolinsky-Yu (BSY) model [2] is one of such models, which is
described as the limit m — oo of the infinite-ranged ‘m-component binomial spin’
Hamiltonian:

m L 2 -
H=—5 ) Ji; 8,8 - mh 35 (1.1
if i
where
. 1 &
5= — Z; Si  (Si,==%1) (1.2)
H=

are called ‘binomial spins’. The interactions J;; are usual Gaussian random variables

with the mean Jy/N and the variance J2/N, where N is the system size (we scale
the unit of the energy to be J = 1 from now on). BSY [2] showed that in the limit
m — oo the equations of state are given by

m,; = tanh (gZJH m; + ﬂh) (1.3)
i
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where 8 = 1/7T. These equations are called the naive mean-field (NMF) equations.
The difference with those for the 5K model, that is, the Thouless—Anderson-Palmer
(TAP) equations, is the lack of the Onsager reaction terms in the mean-field.

BSY [2] solved the NMF equations by using Sompolinsky’s method [3] and found
the solution to be very similar to that for the SK model. Takayama and Nemoto [4]
evaluated the number of solutions of (1.3) by using the replica method which was
introduced for the TAP equations by Bray and Moore [5] and showed that it also
increases exponentially with N in the SG phase. They also found numerically that the
sG phase is marginally stable. More recently, we solved the NMF equations numerically
to find that the number of solutions indeed agrees with the result from the replica
method, and confirmed that the distribution of the overlap between metastable states
is not trivial [6]. In this way, all the previous works indicate the existence of a great
deal of similarity between the two models, and of the universality of the SG nature in
the mean-field theory.

What is missing, however, is a complete and direct derivation of the RSB solution
for the BSY model. The sclution should be essentially equivalent to that obtained by
Sompolinsky’s method, as it is for the SK model {3,7]. To obtain the formulation of
the RsB solution, we apply, in section 2, the RSB scheme proposed by De Dominicis
et al (DGO) [8] to the binomial sG model, which includes both the SK model and the
BSY model as mentioned above. Ik turns out that the formulation thus obtained is
very similar to that for the original SK model. In particular, the Parisi equation holds
for all m without any modification. By virtue of this fact, one can ‘reuse’ almost
all arguments for the SK model to deduce the sG properties! One of the examples
is the phase diagram in T-J; plane. We show that the boundary between the sG
(RSB) phases with and without magnetization is parallel to the T-axis and is located
at J, = 1 for the binomial model and thus for the BSY model. In section 3, we solve
the NMF equations numerically to confirm that the boundary is indeed independent
of T. Our results are summarized in section 4.

2. Replica-symmetry-breaking formulation

The straightforward application of the replica trick to the model Hamiltonian (1.1)
gives the free energy as [2]

BF ,B—m vQ

3J,
maN ~  4n w5 Z - —ln 2 (2.1)

I

F =

where

Zy=T ]exp( ZQ X ab-i-z:ya a) 2.2)

a‘a-——ﬁz S;:ﬁm.g'“ ”y;"—*h-l-JD}ﬁa. ' ' 2.3)
u=1

In the above equations, ¢ and b run from 1 to the number of replicas, n. By Tr
we denote explicitly that the trace is taken over n-replicated bmo:mal Spins.
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The auxiliary fields, or the order parameters, Q,, and M, are determined self-
consistently by '

Qup = Qo = (5°8°%) M, = (5% 2.4)

where (-} denotes the average generéted by Z4. The magnetization per Ising spin
{component of the binomial spin) and the zero-field susceptibility are given by

- o Bm
LIEIO n Z M, X = }1.1—[]—]0 n g Qas @3)
respectively.

We note here that the replica symmetry of M, is expected not to be broken
(M, = M for all a) since the mode associated with Af is stable even in the RS
solution [9].

2.1. The Parisi matriv and DGO’s RSB scheme

To express the broken replica symmetry, Parisi introduced a hierarchical structure for
the matrix Q = {Q,,} (see {1]). As well known, the algebraic structure survives in
the zero-replica limit as the order-parameter function g(x) defined in 0 g = < 1, and
thus the free encrgy can be expressed as the functional of g{x).

A set of the »n dimensional Parisi matrices of level K is specified by a series of
integers n = py > p; > ... > pyx = 1 such that p, divides p,_,. Each element of
the set, A, is specified by I + 1 parameters, {ay,¢,,...,8, = @}, and is obtained
as A in the series of p; x p, submatrices {A,} defined recursively as

Aﬁ+1 a_i\uk+l ak3k+1

ety k41 T Uy

A= 0T S 2.6)
apUpy Uiy 0 Apy

with Ay = @, which represents the value of the diagonal elements. Here we denote -
by U, the p; x p, matrix whose elements are all 1.

The replica symmetric solution is obtained by taking Q to be a Parisi matrix of
level 1 with g, = g, § = ¢ + %¥/m. For the SK model the RS solution is given by
setting m = 1 and X = 1 — g, while m — oo for the BSY model.

Although Parisi’s RSB scheme works well for the binomial spin mode] with finite
m, we adopt here another RSB scheme proposed by De Dominicis et a/ (DGO)[8].
The reason for this is that one must scale the anomalous response by m in each
hierarchical block to attain the BSY limit (m — oo) properly, otherwise the limit
goes t0 an unexpected replica-symmetric solution. By using DGO’s RSB scheme, one
can treat explicitly the anomalous response function A{w ), which was first introduced
by Sompolinsky [3).

In DGO’s RSB scheme, the Parisi matrix Q is modified at the top level and takes
the following struciure:

Qg‘l‘Dg Qo Qg
Q Q,+D, - Q
Q= :O ’ : ’ .. :U @7

QD Qo QQ+DO
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where Q, and D, are p, x p, Parisi matrices described above, and p, is taken to
divide n. The diagonal anomaly D, is specified as

=— .dp—-d,_ ;= - (1gkgK-1 =0 2.8
=% d-dy = (G<k<K-n @8)
and the diagonal element of Q, is given by

F = Xk 2.9
=g+ = (2.9}

To get a ‘proper’ solution, one should take the limit py > p, > - - > px_; — o0
before taking n — 0. After some calculation (see the Appendix for detatls), one gets
the following expressions:

F= (x(l)q(1)+f 9 de + XIS )+Ej—°M='

bt

-fWexp( ; (0))G(o,~+ h+ Jy M) (2.10)

G(z,y) + 34G"(2.9) + §ACG (r. ) = 0 @11
1 1 . 0

G(1,y) = =Try, exp (5;;;\(1)0~ + ya) @12)

where dots and primes denote the derivatives with respect to z and vy, respectively.
Note that the diffusion-like equation (the Parisi equation) (2. 11) is the same as that
for the SK model. The correspondent for Parisi’s RSB scheme is given by choosing
the Parisi gauge, A = zg.

The main m dependence is in the initial condition for G(1,y), (2.12). In fact,
G(1,y) reduces to that for the SK model by setting m = 1 and %(1) = 1 — q(1), as
expected:

G(L,y) = 1871 - q(1)] + In(2cosh By). _ (2.13)
On the other hand, the NMF limit m — oo gives that for the BSY model:
2
G(Ly) = —%i‘(l)ﬁ(l,y)” + In{2 cosh Bly + AX(1)m(L, y)]} (2.14)
7i(1,y) = tanh 8(y + BX()7(L, v)). 215)

In both cases, the Parisi equation (2.11) is common because it depends only on the
structure of the RSB taken and the detail of the spin structure is not relevant,
The zero-field susceptibility (2.5) is given as

x = BX(0) (2.16)

where
1 -
) = g(1)+/ A dz @2.17)

which means ¥(z) = ~A.
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2.2, Variational functional

Sommers and Dupont [7] applied the Lagrange multiplier method for the SK model
to obtain a closed form of equations of state. Their procedure can be naturally
extended for the present model. In fact almost all equations obtained by them hold
without any change.

The variational functional is given as the free energy (2.10) with two additional
terms so that (2.11) and (2.12) hold:

- 1
2=7+ [y PG -Gl - [ dz [ dyP(ey)
x (G(z,p) + 146"z, v) + }AG (2, 9)?) (2.18)

where G,(y) denotes the right-hand side (RHS) of (2:12). As for the SK model,
the Lagrange multiplier P(x,y) is introduccd, which can be interpreted as the in-
ternal field distribution [7, 10]. The functional derivatives give (2.11), (2.12) and the
following equations:

P - 14P" 4 BA(PTEY =0 @19)
P(0,3) = (orq(0) /7 exp - LR oM]) (220)
a(2)= [dy Pley)(r0) @21)
M = [ dy P(O,y)7(0,y) (2:22)
B%(2) = [ dy Ple, )i (2,y) 2.23)

where mi{x,y) = TG'{«,y) is introduced, which satisfies
™+ Lgm" + AT = 0. (2.24)
Many interesting properties of the above equations known for the SK model hold

true for the present model. Among them, the most important is the following: The
differentiation of (2.21) with respect to = gives the condition

f dy Pz, y)7(z,y) = 1 (2.25)

or ¢ = 0. This equation is equivalent to the condition of the marginal stability in the
replica space. The phase boundary of the RSB (the de Almejda-Thouless line [9]) is
given as the special case where r = 1.
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Sompolinsky 3] and Sommers [11] argued that ¢{0) = O implies x = 1 for the
SK model. Their argument holds true for the present case without modification. For
h =J,; =0, ¢(0) = 0 is a solution of (2.21) since /i is an odd function of y so that
m(=,0) = 0. Then, {2.23) and (2.25) reduce to

AX(0) = m'(0,0)  W(0,0)° = ‘ o (2.26)

respectively, which means x' = 35 (0) = 1. This result is aiso true for J, # 0 as long
as M =0, which is a solution of (2.22),

On the other hand, Toulouse [12] discussed the boundary of the spin glass phase
and the mixed phase on J~T plane. If the equation of magnetization has the form
M = f(T,h+ JyM), which is indeed satisfied in the present case, as seen in (2.22)
with (2.20), then it can be expanded as

M =x(T,Jy, =0)(h + Jy M) + non-linear terms. 2.27)
Thus the phase boundary J(7') is given by
JS(T) = x(T, Jp = 0)™". (2.28)

Therefore we can conclude that the phase boundary is parallel to the T-axis and at
Jy = 1 irrespective of the number of the internal Ising spins, m.

3. Numerical analysis

T confirm the validity of the prediction of the RSB solution we perform numerical
analysis on the phase boundary between the $G and the mixed phase for the BSY
mode! by means of the NMF equations (1.3). The procedure is as follows. We solve the
NMF equations numerically for each sample from T = 2.5 down to 0.75 successively
keeping J, fixed. This cooling procedure is repeated for several samples and for
various J, between 0 and 1.5. The system sizes we examine are N = 50, 60, 80, 100,
120, 150, 200 and 200 ~ 50 samples are used for random average, Solutions of (1.3)
are given as local minima of the NMF free energy:

NfNMF=-'—-%ZJ mm; —th
i

+TZ (1"’27?1!‘ 1111+771£.+71-‘Tn‘1£ ln]."'?'ﬂi). (3'1)

2 2 2

To find the local minimum we use rclaxational dynamics described by the following
equations:

dm 3 ¥ -

T = a‘:’;‘“ —; Jiymy + h—Ttanh™ m,. (3.2)
A solution of (1.3) is given as a steady state of these equations. Using the solu-
tion obtained, we estimate the magnetization and the free energy to determine the
boundary between the SG and mixed phases.
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3.1. Magnetization

The magnetization of the system is evaluated as M = N~'3_, m; for each sam-
ple. Because of the finite-size effect, magnetization appears for any J, and N (an
infinitesimal field, h ~ 10™%, is applied during the cooling process to break time-
reversal symmetry). To extract the thermodynamic limit we fit these data to the
following form,

M(N)= M{co)+aN~? (32)

where M(oo), e and ¢ are the fitting parameters. In figure 1 we show two typical
results of the fit together with the raw data, one in the SG phase (J, = 0.6) and the
other in the mixed phase (J; = 1.2). Although the fluctuation of raw data makes
the error rather large, the extrapolated data clearly indicate which phase appears
in the system. The J, dependence of the squared magnetization, A{2, is shown in
figure 2 for several temperatures. For all temperatures investigated, the magnetization
vanishes below J§ while M? ~ J, — J§ above J§ with J§ ~ 1. This result indicates
that J§ (= 1) is independent of T and that the critical exponent of magnetization
with respect to J; is 1.

M2 —————
o2l K. %, ' y
op8le,:
ODO" 3:
(R
-3 3
o hsly
005;‘8'
01r og " 1
655
sony 55
:iii:.......' OO
(1] %MMG&OMOS&DOOOOO—
. 4 . .TL . 3

Figpure |. Temperature dependence of the magaelization at Jp = 1.2 (upper) and at
Jo = 0.6 (lower) for N = 50. 60, 100, 120 and 200 {s} {top lo bottom) and the
thermodynamic limit (e).

3.2, Free energy

As easily seen from (3.1), the free energy is related to the magnetization through the
equation

Afme _ 1,2
which means the free energy is independent of J; in the paramagnetic and the sSG
phases. We show in figure 3 the free energy versus J, at T = 0.8. The free energy
has a plateau region below J§ ~ 1 and then begins to decrease with increasing
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Figure 2. J; dependence of the squarcd magnetization a1 T = 0.8(s), 1.0{0), L2(M),
L4{g), 1.6(#), 1.8(0).

Jg. as expected, To check the comsistency of thc data, we perform the numerical
differentiation of the free energy to comparc it with the previous result. As shown in
the inset of figure 3 the results from direct obscrvation and from the relation (3.3)
are in perfect agreement quantitatively,

4. Summary

We have formulated the RSB solution for the binomial SG model, which interpolates
between the SK model and the BSY model. The formulation turned out to be very
similar to that of the original one for the SK model. In particular, the Parisi equation
can be constructed so as to be independent of m. This similarity enables us to discuss
the sG properties with the same arguments as used for the SK model. Thus we can
conclude that the binomial SG model includes a class of the mean-field models in
which the nature of the SG phase is common. In fact the TAP free energy for this
model is easily evaluated by using Plefka’s method [13], and is given by

i " 1 Yo e \
f=—iizj']£‘fmimj - h.zi:mi + mZ']ij(l—mi)(l_mj)

i

+TZ(3+,)’“='111]+”"='+l_mfml’m"). @.1)

) 9 2

- -

This is equivalent to that introduced in [4] with + = 1/m. There it was emphasized
that the Onsager term in the equations of state plays only a minor role in yielding
the sG properties. The present result gives a complementary reasoning for them.

As an example of such common properties we have shown that the boundary
between the 8G and mixed phases is independent of temperature, that is, the boundary
is vertical to the Jy-axis in T-J, plane. This verticality has been confirmed for the
BSY model by numerical analysis of the NMF equations. This completes the phase
diagram of the model in the T-J, plane as summarized in figure 4.
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Figure 3. Jo dependence of the free energy at T = 1.0. The inset shows the squared
magnelization evaluaied from numerical differentiaticn of the free energy{s) and that
measured directly (o).

T PM
2
FM
1F SG
mixed
0 I ' ]
1 J, 2

Figure 4. Phase diagram for the BSY model. PM, 35, FM and mixed represent the
paramagnretic, spin glass, ferromagnetic and mixed phases. The PM-FM boundary is
given as T = Jo + 1/ Jy.
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Appendix

It is convenient to write the ‘partition function’ given by (2.2) in matrix form as

Zo(y) = Trin,exp (o7 Qo + yuTa) (A.1)
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where o and u are the n-dimensional column vectors whose elements are o, and
1, respectively. At the top level, Q is divided into n/p, x n/p, blocks, so we can
rewrite (A.l) as '

Zo(y) = Zo({y; = v}) (A.2)
where
nfpo n/ps T 2/ po
Zo({yi})ETf(nJEXP[ Z%.D ooi T 5(2%,1’) Qu(z 0’0..?)
n/pa I
+ 2 ysﬂ?ﬂu,s] (A.3)

or, more generally, we define

nfpo
Zk({yi}) = Tr(npk/m]e'xp [ Z LN (Dk - dk_luk}a'k,,-

1 ﬂ/}”u T ﬂf‘pn 'n./pu

Here ), ; denotes the ith of the p, dlmensnonal column vectors and there are n/p,
such vectors, so that there are a total of np, /p, binomial spins (¢} in the exponent.
Simjlarly w, denotes the p; dimensional column vector whose clements are all 1.
Equation (A.4) reduces 10 {A.3) by setting & =0, prov:ded g, =d_, =0 The
definition seems somewhat artificial but one will find it quitc natural soon. Indeed it
is a natural generalization of the recursive equation introduced by Duplantier [14].

Now we decompose the exponent into p,/p,., blocks to lower the level by 1.
Noting U, = ©,, 4], we have

nfpa P fPr31
Z2.({y = Tr(npklpu]exp{ [ Z aI+1,ij(Dk+1 —d U)o

Pid Phi 1 pefprsr ,n/po T
+5dk( Z “L+1°’L+1 u) ] + '2'[ Z ( Z 0'};-1-1.:’;)
i. i
nfpo n/po Prf et 2
X {Qpiq — @ Ypyr) Z Crgr,ij + 5‘!:.( z Z UI-;-W:.-H.H) ]
i j
nfpo P/ Pr+L
+ Z Z ya“k+1‘7&+1 u}
dz
- f(zwaqk)lfz'e“( :.)

P/ Prts 1"/ o o
X Tr(npepo) EXP { Z {5 "’I{+1.ij(ok+1 = dpUpi1)o 5
K i

nPu

o dn "
(Bréd,)ie P ( zadk)



Phase diagram of the NMF model 5571

n/pa n/po
( Z Tryl, z;) (Qpir = gpUigs) Z O jet1,ij

n/po i
+ Z (z+ v+ ?75)“{-}-10&4-1:1'}'}}
n/}"o 2

dz N
- f(‘zvrc?qk)l/—z exp ( - 'Jé'qk H /(%M yi72 exp ( - 254,)

X Zi({zty; + 7?5})%”!”"+1 (A.5)

where 8q;, = q; —gq,,_, and éd, = d; — d,_;. TO get the free energy per component
Ising spin, we introduce

G.({w:he

oy mz,({y) Gw=0{u=v}. (A

Then we get the following recursion formula:

. g

n/rJ
MPy 19
Gk(y) mnm /(076 )”lq exp ( Oéqk H/ ) d'-'h

cexp {mpy | - 52 Ay 0+ peGently s +n}ﬂ} (A7

For p; — oo we can estimate the integration with respect to n; by the saddle point
method. Assuming that the saddle point {7} is given at the symmetric point (n{ = #§
for ail £), we get

o Ry (agk+l dGhp

L = = A, z+vy+ nt A8
) 87?:’ ){,,;,,;-} k dy ( ¥ ’7}.) ( )

Do

and

dz ox (_ z'")
(2m8q.) 7 P\ 7 28q,

-—-—m;pk [ (n5)° + Grply+ =+ T?E)]}
0

Gu(y) = miopk In

xexp{ A,

dz 52
= | asq )z P ( - zéf,k)
1 Y .
x [— E(UE)' + Gyt =+ "M)] (A.9)

where mnp, /p, < 1 is used. This recursion terminates at & = A, where Gy is
given by

"'/p n/PD ]

Z Xi/m—dp)of +yz

1
2
In Ty, exp (L e -[-JO') (A.10)
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Finally we can take the continuous limit where K — oo, kf K — z, & — A(z)dz,
bq, — q(a)dx, n5(y) — A(x)G' (2. y)dx and G {y) — Gz, y):

Gz, y) + L(a(2)G" (2. y) + A(2)G(z,¥)?) =0 (A.11)

and

1 1
G{l,y) = ;In Tr;yexp (ﬁ,\-‘(l)a?-}-ya). (A.12)
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